Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl_out Def t.out == 2of(t)
Thm* t:AdjList. t.out t.size(t.size List)
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
productlistnillist_ind
intnatural_numberaddless_thansetfunction
recursive_def_noticeuniversememberimpliesall
!abstraction

Definitions graph 1 3 Sections Graphs Doc