(22steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc

At: dfs induction 1

1. the_graph: Graph
2. the_obj: GraphObject(the_graph)
3. P: Vertices(the_graph)traversal(the_graph)traversal(the_graph)Prop
4. s: traversal(the_graph)
5. i: Vertices(the_graph)
6. s1,s2:traversal(the_graph), i:Vertices(the_graph). P(i,s1,s2) l_disjoint(Vertices(the_graph)+Vertices(the_graph);s2;s1)
7. s1,s2:traversal(the_graph), i:Vertices(the_graph). P(i,s1,s2) no_repeats(Vertices(the_graph)+Vertices(the_graph);s2)
8. s:traversal(the_graph), i:Vertices(the_graph). member-paren(x,y.the_obj.eq(x,y);i;s) P(i,s,nil)
9. s1,s2,s3:traversal(the_graph), i,j:Vertices(the_graph). i-the_graph- > j P(j,s1,s2) P(i,s2 @ s1,s3) P(i,s1,s3 @ s2)
10. s1,s2:traversal(the_graph), i:Vertices(the_graph). member-paren(x,y.the_obj.eq(x,y);i;s1) P(i,[inr(i) / s1],s2) P(i,s1,[inl(i) / (s2 @ [inr(i)])])
11. M: traversal(the_graph)
12. i:Vertices(the_graph), s:traversal(the_graph). M([inl(i) / s])M(s)
13. i:Vertices(the_graph), s:traversal(the_graph). member-paren(x,y.the_obj.eq(x,y);i;s) M([inr(i) / s]) < M(s)
d:, s:traversal(the_graph), i:Vertices(the_graph). M(s)d (s':traversal(the_graph). M(s' @ s)M(s) & P(i,s,s') & dfs(the_obj;s;i) = (s' @ s))

By:
Inst Thm* graphobj-properties [the_graph;the_obj]
THEN
Analyze -1
THEN
Analyze -1
THEN
Thin 5
THEN
Thin 4
THEN
CompleteInductionOnNat
THEN
RecUnfold `dfs` 0
THEN
SplitOnConclITE
THEN
Try ((InstConcl [nil]) THEN (Reduce 0) THEN (Complete EasyHyp))


Generated subgoal:

14. s1,s2:traversal(the_graph), i:Vertices(the_graph). P(i,s1,s2) l_disjoint(Vertices(the_graph)+Vertices(the_graph);s2;s1)
5. s1,s2:traversal(the_graph), i:Vertices(the_graph). P(i,s1,s2) no_repeats(Vertices(the_graph)+Vertices(the_graph);s2)
6. s:traversal(the_graph), i:Vertices(the_graph). member-paren(x,y.the_obj.eq(x,y);i;s) P(i,s,nil)
7. s1,s2,s3:traversal(the_graph), i,j:Vertices(the_graph). i-the_graph- > j P(j,s1,s2) P(i,s2 @ s1,s3) P(i,s1,s3 @ s2)
8. s1,s2:traversal(the_graph), i:Vertices(the_graph). member-paren(x,y.the_obj.eq(x,y);i;s1) P(i,[inr(i) / s1],s2) P(i,s1,[inl(i) / (s2 @ [inr(i)])])
9. M: traversal(the_graph)
10. i:Vertices(the_graph), s:traversal(the_graph). M([inl(i) / s])M(s)
11. i:Vertices(the_graph), s:traversal(the_graph). member-paren(x,y.the_obj.eq(x,y);i;s) M([inr(i) / s]) < M(s)
12. x,y:Vertices(the_graph). the_obj.eq(x,y) x = y
13. T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)
14. T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)
15. d:
16. d1:. d1 < d (s:traversal(the_graph), i:Vertices(the_graph). M(s)d1 (s':traversal(the_graph). M(s' @ s)M(s) & P(i,s,s') & dfs(the_obj;s;i) = (s' @ s)))
17. s: traversal(the_graph)
18. i: Vertices(the_graph)
19. M(s)d
20. member-paren(x,y.the_obj.eq(x,y);i;s)
s':traversal(the_graph). M(s' @ s)M(s) & P(i,s,s') & [inl(i) / (the_obj.eacc((s',j. dfs(the_obj;s';j)),[inr(i) / s],i))] = (s' @ s) traversal(the_graph)
19 steps

About:
listconsconsnilassertless_thanunioninlinrlambdaapply
functionuniverseequalpropimpliesandallexists

(22steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc