| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hnot | Def not == p: .  p |
| | | Thm* not (hbool  hbool) |
|
| hodd | Def odd == n: . odd(n) |
| | | Thm* odd (hnum  hbool) |
|
| odd | Def odd(n) == if n= 0 then false else  odd(n-1) fi (recursive) |
| | | Thm* n: . odd(n)  |
|
| bnot | Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| hand | Def and == p: . q: . p q |
| | | Thm* and (hbool  hbool  hbool) |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| hf | Def f == false |
| | | Thm* f hbool |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hsuc | Def suc == n: . n+1 |
| | | Thm* suc (hnum  hnum) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |