| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hnot | Def not == p: .  p |
| | Thm* not (hbool  hbool) |
|
hodd | Def odd == n: . odd(n) |
| | Thm* odd (hnum  hbool) |
|
odd | Def odd(n) == if n= 0 then false else  odd(n-1) fi (recursive) |
| | Thm* n: . odd(n)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hf | Def f == false |
| | Thm* f hbool |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hsuc | Def suc == n: . n+1 |
| | Thm* suc (hnum  hnum) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |