WhoCites Definitions hol arithmetic 3 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites heven?
hevenDef even == n:. even(n)
Thm* even  (hnum  hbool)
evenDef even(n) == if n=0 then true else even(n-1) fi   (recursive)
Thm* n:. even(n 
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
tlambdaDef (x:Tb(x))(x) == b(x)
bnotDef b == if b false else true fi
Thm* b:b  
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
btrueDef true == inl()
Thm* true  
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A
leDef AB == B<A
Thm* i,j:. (ij Prop
bfalseDef false == inr()
Thm* false  
ifthenelseDef if b t else f fi == InjCase(b ; tf)
Thm* b:A:Type, p,q:A. if b p else q fi  A
notDef A == A  False
Thm* A:Prop. (A Prop

Syntax:even has structure: heven

About:
boolbfalsebtrueifthenelseassertitintnatural_numbersubtractint_eqless_than
inlinrdecidesetlambdaapply
functionrecursive_def_noticeuniverseaxiommemberpropimpliesfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions hol arithmetic 3 Sections HOLlib Doc