| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
heven | Def even == n: . even(n) |
| | Thm* even (hnum  hbool) |
|
even | Def even(n) == if n= 0 then true else  even(n-1) fi (recursive) |
| | Thm* n: . even(n)  |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hodd | Def odd == n: . odd(n) |
| | Thm* odd (hnum  hbool) |
|
hor | Def or == p: . q: . p  q |
| | Thm* or (hbool  hbool  hbool) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
odd | Def odd(n) == if n= 0 then false else  odd(n-1) fi (recursive) |
| | Thm* n: . odd(n)  |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |