| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| hmult | Def mult == m: . n: . m n |
| | | Thm* mult (hnum  hnum  hnum) |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hodd | Def odd == n: . odd(n) |
| | | Thm* odd (hnum  hbool) |
|
| hsuc | Def suc == n: . n+1 |
| | | Thm* suc (hnum  hnum) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| odd | Def odd(n) == if n= 0 then false else  odd(n-1) fi (recursive) |
| | | Thm* n: . odd(n)  |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |