Thm* 'a:S. ( x:'a. false ) = false | [ball_bfalse] |
Thm* 'a:S. ( x:'a. true ) = true | [ball_btrue] |
Thm* 'a:S. ( x:'a. false ) = false | [bexists_bfalse] |
Thm* 'a:S. ( x:'a. true ) = true | [bexists_btrue] |
Thm* p: . false = p  p | [equal_bfalse_to_assert_2] |
Thm* p: . p = false  p | [equal_bfalse_to_assert] |
Thm* p: . true = p  p | [equal_btrue_to_assert_2] |
Thm* p: . p = true  p | [equal_btrue_to_assert] |
Thm* 'a:S, x:'a. (x = x) = true | [bequal_refl_simp] |
Thm* b: . (b false ) = false | [band_simp_2] |
Thm* b: . (true  b) = b | [band_simp_3] |
Thm* b: . (false  b) = false | [band_simp_4] |
Thm* b: . (false  b) = b | [bor_simp_4] |
Thm* b: . (true  b) = true | [bor_simp_3] |
Thm* b: . (b  false ) = b | [bor_simp_2] |
Thm* b: . (b  true ) = true | [bor_simp_1] |
Thm* b: . (b true ) = b | [band_simp_1] |
Thm* 'a:S. all( P:'a  hbool. all( x:'a. implies(P(x),P(select(P))))) | [hselect_ax] |
Thm* 'b,'a:S. all( t:'a  'b. equal(( x:'a. t(x)),t)) | [heta_ax] |
Thm* 'b,'a:S.
Thm* all
Thm* ( P:'a  hbool. all
Thm* ( P:'a  hbool. ( rep:'b  'a. equal
Thm* ( P:'a  hbool. ( rep:'b  'a. (type_definition(P,rep)
Thm* ( P:'a  hbool. ( rep:'b  'a. ,and
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(all
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. all
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. implies
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. (equal
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. ((rep(x')
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. (,rep(x''))
Thm* ( P:'a  hbool. ( rep:'b  'a. ,(( x':'b. ( x'':'b. ,equal(x',x''))))
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,all
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. equal
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. (P(x)
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. ,exists
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. ,( x':'b. equal
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. ,( x':'b. (x
Thm* ( P:'a  hbool. ( rep:'b  'a. ,,( x:'a. ,( x':'b. ,rep(x'))))))))) | [htype_definition_wd] |
Thm* 'a,'b:S.
Thm* all( f:'a  'b. equal(onto(f),all( y:'b. exists( x:'a. equal(y,f(x)))))) | [honto_def] |
Thm* 'b,'a:S.
Thm* all
Thm* ( f:'a  'b. equal
Thm* ( f:'a  'b. (one_one(f)
Thm* ( f:'a  'b. ,all
Thm* ( f:'a  'b. ,( x1:'a. all
Thm* ( f:'a  'b. ,( x1:'a. ( x2:'a. implies
Thm* ( f:'a  'b. ,( x1:'a. ( x2:'a. (equal(f(x1),f(x2))
Thm* ( f:'a  'b. ,( x1:'a. ( x2:'a. ,equal(x1,x2)))))) | [hone_one_def] |
Thm* 'a:S.
Thm* equal
Thm* (cond
Thm* , t:hbool. t1:'a. t2:'a. select
Thm* , t:hbool. t1:'a. t2:'a. ( x:'a. and
Thm* , t:hbool. t1:'a. t2:'a. ( x:'a. (implies(equal(t,t),equal(x,t1))
Thm* , t:hbool. t1:'a. t2:'a. ( x:'a. ,implies(equal(t,f),equal(x,t2))))) | [hcond_def] |
Thm* 'b,'a:S. equal(let, f:'a  'b. x:'a. f(x)) | [hlet_def] |
Thm* 'a:S.
Thm* equal
Thm* (exists_unique
Thm* , P:'a  hbool. and
Thm* , P:'a  hbool. (exists(P)
Thm* , P:'a  hbool. ,all
Thm* , P:'a  hbool. ,( x:'a. all( y:'a. implies(and(P(x),P(y)),equal(x,y)))))) | [hexists_unique_def] |
Thm* 'a:S. equal(all, P:'a  hbool. equal(P, x:'a. t)) | [hforall_def] |
Thm* 'a:S. equal(exists, P:'a  hbool. P(select(P))) | [hexists_def] |
Thm* p:('a  ).
Thm* b_exists_unique('a;x.p(x))
Thm* 
Thm* ( x:'a. p(x)) & ( x,y:'a. p(x) & p(y)  x = y) | [assert_of_b_exists_unique] |
Def onto('a;'b;f) == y:'b. x:'a. y = f(x) | [onto] |
Def one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y | [one_one] |