| Some definitions of interest. |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hind | Def hind ==  |
| | Thm* hind S |
|
hnot | Def not == p: .  p |
| | Thm* not (hbool  hbool) |
|
hone_one | Def one_one == f:'a 'b.  one_one('a;'b;f) |
| | Thm* 'a,'b:S. one_one (('a  'b)  hbool) |
|
honto | Def onto == f:'a 'b.  onto('a;'b;f) |
| | Thm* 'a,'b:S. onto (('a  'b)  hbool) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
one_one | Def one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y |
| | Thm* 'a,'b:Type, f:('a 'b). one_one('a;'b;f) Prop |
|
onto | Def onto('a;'b;f) == y:'b. x:'a. y = f(x) |
| | Thm* 'a,'b:Type, f:('a 'b). onto('a;'b;f) Prop |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |