| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| himplies | Def implies == p: . q: . p  q |
| | | Thm* implies (hbool  hbool  hbool) |
|
| bimplies | Def p  q ==  p  q |
| | | Thm* p,q: . p  q  |
|
| hnot | Def not == p: .  p |
| | | Thm* not (hbool  hbool) |
|
| bnot | Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| hf | Def f == false |
| | | Thm* f hbool |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |