Definitions hol bool Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
b_exists_uniqueDef b_exists_unique('a;x.p(x))
Def == (x:'ap(x))(x,y:'a.  (p(x)p(y))(x = y))
Thm* 'a:Type, p:('a). b_exists_unique('a;x.p(x))  
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bexistsDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bimpliesDef pq == p  q
Thm* p,q:pq  
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolbfalseifthenelsesetapplyfunction
universeequalmembertrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol bool Sections HOLlib Doc