Definitions hol bool Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
hequalDef equal == x:'ay:'ax = y
Thm* 'a:S. equal  ('a  'a  hbool)
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
hletDef let == f:'a'be:'a. let x = e in f(x)
Thm* 'a,'b:S. let  (('a  'b 'a  'b)
letDef let x = a in b(x) == (x.b(x))(a)
Thm* A,B:Type, a:Ab:(AB). let x = a in b(x B
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertsetlambdaapplyfunctionuniverse
equalmemberpropfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol bool Sections HOLlib Doc