| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hlet | Def let == f:'a 'b. e:'a. let x = e in f(x) |
| | Thm* 'a,'b:S. let (('a  'b)  'a  'b) |
|
let | Def let x = a in b(x) == ( x.b(x))(a) |
| | Thm* A,B:Type, a:A, b:(A B). let x = a in b(x) B |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |