| Some definitions of interest. |
|
ball | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
onto | Def onto('a;'b;f) == y:'b. x:'a. y = f(x) |
| | Thm* 'a,'b:Type, f:('a 'b). onto('a;'b;f) Prop |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |