Definitions hol bool Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bexistsDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bimpliesDef pq == p  q
Thm* p,q:pq  
prop_to_boolDef P == InjCase(lem(P) ; true; false)
Thm* P:Prop. (P 
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
type_definitionDef type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
Thm* 'a,'b:Type, P:('a), rep:('b'a). type_definition('a;'b;P;rep Prop

About:
boolbfalsebtrueifthenelsedecide
setapplyfunctionuniverseequalmemberprop
impliesandtrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol bool Sections HOLlib Doc