hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  == {i:| 0i }

is mentioned by

Thm* P:(). P(0) & (n:P(n P(n+1))  (n:P(n))[induction]
Thm* m,n:m+1 = n+1    m = n[inv_suc]
Thm* n:n+1 = 0  [not_suc]
Thm* iso_pair(;;is_num_rep;rep_num;abs_num)[num_iso]
Thm* m,n:m = n  m = n[nat_eq_to_int]
Thm* m,n:. Dec(m = n)[decidable__nat]
Thm* n:x:'af:('a'a). n>0  ncompose(f;n;x) = f(ncompose(f;n-1;x))[ncompose_pos]
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a[ncompose_wf]
Def suc == n:n+1[hsuc]
Def abs_num == n:. @m:. (n = rep_num(m )[habs_num]
Def rep_num == n:. ncompose(suc_rep;n;zero_rep)[hrep_num]
Def is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
[his_num_rep]
Def zero_rep == @x:. (y:x = suc_rep(y )[hzero_rep]
Def suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)[hsuc_rep]
Def hnum == [hnum]

In prior sections: int 1 bool 1 hol min

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc