Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
hallDef all == p:'ax:'a. (p(x))
Thm* 'a:S. all  (('a  hbool)  hbool)
assertDef b == if b True else False fi
Thm* b:b  Prop
handDef and == p:q:pq
Thm* and  (hbool  hbool  hbool)
hboolDef hbool == 
Thm* hbool  S
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
himpliesDef implies == p:q:pq
Thm* implies  (hbool  hbool  hbool)
hnumDef hnum == 
Thm* hnum  S
hsucDef suc == n:n+1
Thm* suc  (hnum  hnum)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertintnatural_numberaddsetapply
functionuniversememberpropfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc