Definitions
hol
num
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
gt
Def
i
>
j
==
j
<
i
Thm*
i
,
j
:
. (
i
>
j
)
Prop
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
Thm*
S
ncompose
Def
ncompose(
f
;
n
;
x
) == if
n
=
0 then
x
else
f
(ncompose(
f
;
n
-1;
x
)) fi (recursive)
Thm*
'a
:Type,
n
:
,
x
:
'a
,
f
:(
'a
'a
). ncompose(
f
;
n
;
x
)
'a
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
hol
num
Sections
HOLlib
Doc