Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
habs_numDef abs_num == n:. @m:. (n = rep_num(m )
Thm* abs_num  (hind  hnum)
hrep_numDef rep_num == n:. ncompose(suc_rep;n;zero_rep)
Thm* rep_num  (hnum  hind)
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
hnumDef hnum == 
Thm* hnum  S
natDef  == {i:| 0i }
Thm*   Type
Thm*   S

About:
intnatural_numberdecideset
applyfunctionuniverseequalmemberall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc