| Some definitions of interest. |
|
hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | Thm* zero_rep hind |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
choose | Def @x:T. P(x) == InjCase(lem({x:T| P(x) }); x. x, arb(T)) |
| | Thm* T:S, P:(T Type). (@x:T. P(x)) T |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |