Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
ncomposeDef ncompose(f;n;x) == if n=0 then x else f(ncompose(f;n-1;x)) fi   (recursive)
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a
notDef A == A  False
Thm* A:Prop. (A Prop

About:
intnatural_numbersubtractdecide
setapplyfunctionrecursive_def_noticeuniverse
equalmemberpropimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc