| Some definitions of interest. |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
label | Def t ...$L == t |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |