| Some definitions of interest. |
|
hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | Thm* zero_rep hind |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
label | Def t ...$L == t |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
one_one | Def one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y |
| | Thm* 'a,'b:Type, f:('a 'b). one_one('a;'b;f) Prop |
|
onto | Def onto('a;'b;f) == y:'b. x:'a. y = f(x) |
| | Thm* 'a,'b:Type, f:('a 'b). onto('a;'b;f) Prop |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |