Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
labelDef t  ...$L == t
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
ncomposeDef ncompose(f;n;x) == if n=0 then x else f(ncompose(f;n-1;x)) fi   (recursive)
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a
notDef A == A  False
Thm* A:Prop. (A Prop
one_oneDef one_one('a;'b;f) == x,y:'af(x) = f(y 'b  x = y
Thm* 'a,'b:Type, f:('a'b). one_one('a;'b;f Prop
ontoDef onto('a;'b;f) == y:'bx:'ay = f(x)
Thm* 'a,'b:Type, f:('a'b). onto('a;'b;f Prop
tlambdaDef (x:Tb(x))(x) == b(x)

About:
intnatural_numbersubtractsetapplyfunctionrecursive_def_noticeuniverse
equalmemberpropimpliesandfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc