| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hrep_num | Def rep_num == n: . ncompose(suc_rep;n;zero_rep) |
| | Thm* rep_num (hnum  hind) |
|
hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | Thm* zero_rep hind |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |