Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
hnumDef hnum == 
Thm* hnum  S
hrep_numDef rep_num == n:. ncompose(suc_rep;n;zero_rep)
Thm* rep_num  (hnum  hind)
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
prop_to_boolDef P == InjCase(lem(P) ; true; false)
Thm* P:Prop. (P 
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolbfalsebtrueifthenelseassertintnatural_number
decidesetapplyfunction
universeequalmemberpropandfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc