| Some definitions of interest. |
|
hselect | Def select == p:'a  . @ x:'a. (p(x)) |
| | Thm* 'a:S. select (('a  hbool)  'a) |
|
bchoose | Def @ x:'a. p(x) == @x:'a. p(x) |
| | Thm* 'a:S, p:('a  ). (@ x:'a. p(x)) 'a |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
hnot | Def not == p: .  p |
| | Thm* not (hbool  hbool) |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
choose | Def @x:T. P(x) == InjCase(lem({x:T| P(x) }); x. x, arb(T)) |
| | Thm* T:S, P:(T Type). (@x:T. P(x)) T |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hind | Def hind ==  |
| | Thm* hind S |
|
hone_one | Def one_one == f:'a 'b.  one_one('a;'b;f) |
| | Thm* 'a,'b:S. one_one (('a  'b)  hbool) |
|
honto | Def onto == f:'a 'b.  onto('a;'b;f) |
| | Thm* 'a,'b:S. onto (('a  'b)  hbool) |
|
label | Def t ...$L == t |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
one_one | Def one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y |
| | Thm* 'a,'b:Type, f:('a 'b). one_one('a;'b;f) Prop |
|
onto | Def onto('a;'b;f) == y:'b. x:'a. y = f(x) |
| | Thm* 'a,'b:Type, f:('a 'b). onto('a;'b;f) Prop |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |