Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bchooseDef @x:'ap(x) == @x:'ap(x)
Thm* 'a:S, p:('a). (@x:'ap(x))  'a
bnotDef b == if b false else true fi
Thm* b:b  
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
labelDef t  ...$L == t
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
notDef A == A  False
Thm* A:Prop. (A Prop
one_oneDef one_one('a;'b;f) == x,y:'af(x) = f(y 'b  x = y
Thm* 'a,'b:Type, f:('a'b). one_one('a;'b;f Prop
ontoDef onto('a;'b;f) == y:'bx:'ay = f(x)
Thm* 'a,'b:Type, f:('a'b). onto('a;'b;f Prop
prop_to_boolDef P == InjCase(lem(P) ; true; false)
Thm* P:Prop. (P 
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolbfalsebtrueifthenelseintnatural_number
decidesetapplyfunction
universeequalmemberpropimpliesfalseallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc