Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bchooseDef @x:'ap(x) == @x:'ap(x)
Thm* 'a:S, p:('a). (@x:'ap(x))  'a
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bnotDef b == if b false else true fi
Thm* b:b  
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolbfalsebtrueifthenelseintnatural_number
decidesetapplyfunction
universeequalmemberpropimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc