(3steps total)
PrintForm
Definitions
Lemmas
hol
pair
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
hrep
prod
wd
'a
,
'b
:S.
equal
(rep_prod
,select
,
(
rep
:hprod(
'a
;
'b
)
,(
'a
,(
'b
,(
hbool. and
,(
hbool.
(all
,(
hbool. (
(
p'
:hprod(
'a
;
'b
). all
,(
hbool. ((
p'
:hprod(
'a
;
'b
).
(
p''
:hprod(
'a
;
'b
). implies
,(
hbool. ((
p'
:hprod(
'a
;
'b
). (
p''
:hprod(
'a
;
'b
).
(equal
,(
hbool. ((
p'
:hprod(
'a
;
'b
). (
p''
:hprod(
'a
;
'b
). (
(
rep
(
p'
)
,(
hbool. ((
p'
:hprod(
'a
;
'b
). (
p''
:hprod(
'a
;
'b
). (
,
rep
(
p''
))
,(
hbool. ((
p'
:hprod(
'a
;
'b
). (
p''
:hprod(
'a
;
'b
).
,equal(
p'
,
p''
))))
,(
hbool.
,all
,(
hbool. ,
(
p
:
'a
'b
hbool. equal
,(
hbool. ,(
p
:
'a
'b
hbool.
(is_pair(
p
)
,(
hbool. ,(
p
:
'a
'b
hbool.
,exists
,(
hbool. ,(
p
:
'a
'b
hbool. ,
(
p'
:hprod(
'a
;
'b
). equal
,(
hbool. ,(
p
:
'a
'b
hbool. ,(
p'
:hprod(
'a
;
'b
).
(
p
,(
hbool. ,(
p
:
'a
'b
hbool. ,(
p'
:hprod(
'a
;
'b
).
,
rep
(
p'
))))))))
By:
HN THEN StrongAuto THEN Try (Complete (Unfold `label` 0))
THEN
Try
(Complete
(
(Unfold `label` 0 THEN MemEqCD THEN Try (Complete Auto) THEN Unfold `label` 0
((
THEN
((
MemEqCD
((
THEN
((
Try (Complete Auto)
((
THEN
((
Unfold `label` 0
((
THEN
((
Try (Complete Auto)))
Generated subgoal:
1
1.
'a
: S
2.
'b
: S
rep_prod
=
(@
rep
:hprod(
'a
;
'b
)
'a
'b
hbool
(@
((
p'
,
p''
:hprod(
'a
;
'b
). ((
rep
(
p'
)) =
(
rep
(
p''
)))
(
p'
=
p''
))
(@
(
x
:
'a
'b
hbool
(@
(
((is_pair(
x
)) =
(
p'
:hprod(
'a
;
'b
). (
x
=
(
rep
(
p'
))))))))
2
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(3steps total)
PrintForm
Definitions
Lemmas
hol
pair
Sections
HOLlib
Doc