| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| hand | Def and == p: . q: . p q |
| | | Thm* and (hbool  hbool  hbool) |
|
| hprim_rec | Def prim_rec == x:'a. f:'a    'a. m: . prim_rec_fun(x,f,m,pre(m)) |
| | | Thm* 'a:S. prim_rec ('a  ('a  hnum  'a)  hnum  'a) |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hsuc | Def suc == n: . n+1 |
| | | Thm* suc (hnum  hnum) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |