| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hsimp_rec_rel | Def simp_rec_rel
Def == fun:  'a. x:'a. f:'a 'a. n: .  (fun(0) = x
Def == & ( m: . m<n  fun(m+1) = f(fun(m)))) |
| | Thm* 'a:S. simp_rec_rel ((hnum  'a)  'a  ('a  'a)  hnum  hbool) |
|
label | Def t ...$L == t |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |