Definitions hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
hsimp_rec_relDef simp_rec_rel
Def == fun:'ax:'af:'a'an:(fun(0) = x
Def == & (m:m<n  fun(m+1) = f(fun(m))))
Thm* 'a:S. simp_rec_rel  ((hnum  'a 'a  ('a  'a hnum  hbool)
labelDef t  ...$L == t
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
ncomposeDef ncompose(f;n;x) == if n=0 then x else f(ncompose(f;n-1;x)) fi   (recursive)
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertintnatural_numberaddsubtractless_thanset
applyfunctionrecursive_def_noticeuniverseequalmemberprop
impliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol prim rec Sections HOLlib Doc