PrintForm
Definitions
hol
prim
rec
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
hsimp
rec
rel
wd
'a
:S.
all
(
fun
:hnum
(
'a
. all
(
'a
.
(
x
:
'a
. all
(
'a
. (
x
:
'a
.
(
f
:
'a
'a
. all
(
'a
. (
x
:
'a
. (
f
:
'a
'a
.
(
n
:hnum. equal
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum.
(simp_rec_rel(
fun
,
x
,
f
,
n
)
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum.
,and
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,
(equal(
fun
(0),
x
)
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,
,all
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,,
(
m
:hnum. implies
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,,(
m
:hnum.
(lt(
m
,
n
)
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,,(
m
:hnum.
,equal
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,,(
m
:hnum. ,
(
fun
(suc(
m
))
(
'a
. (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. ,,(
m
:hnum. ,
,
f
(
fun
(
m
)))))))))))
By:
Unab [`hsimp_rec_rel`] THEN Simpsetp [`hol_to_nuprl`;`bequal`] THEN StrongAuto
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrintForm
Definitions
hol
prim
rec
Sections
HOLlib
Doc