Definitions hol sum Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
houtrDef outr == u:'a+'b. InjCase(ux. arb('b), x)
Thm* 'a,'b:S. outr  (hsum('a'b 'b)
isrDef isr(x) == InjCase(xy. falsez. true)
Thm* A,B:Type, x:A+B. isr(x 
outrDef outr(x) == InjCase(xy. "???"; zz)
Thm* A,B:Type, x:A+Bisl(x outr(x B
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}

About:
boolbfalsebtrueifthenelseasserttokenunion
decidesetuniversemember
propimpliesfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol sum Sections HOLlib Doc