Definitions hol sum HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in hol sum

Defoutl(x)[outl]union
Defoutl[houtl]
Defexists[hexists]hol bool
Defis_sum_rep[his_sum_rep]
Defall[hall]hol bool
Deftype_definition[htype_definition]hol bool
Defexists_unique[hexists_unique]hol bool
Defb_exists_unique('a;x.p(x))[b_exists_unique]hol bool
Defx:TP(x)[bexists]hol
Defx:TP(x)[ball]hol
Deftype_definition('a;'b;P;rep)[type_definition]hol
Defb[assert]bool 1
DefP  Q[implies]core
DefS[stype]hol
Defx:AB(x)[all]core
Defoutr(x)[outr]union
Defoutr[houtr]
Defhsum('a'b)[hsum]
Defnot[hnot]hol bool
Defand[hand]hol bool
Defor[hor]hol bool
Defequal[hequal]hol min
Defhbool[hbool]hol min
Def'a  'b[hfun]hol min
Defabs_sum[habs_sum]
DefP & Q[and]core
Definl[hinl]
Definr[hinr]
Defisl[hisl]
Defisr[hisr]
Defo[ho]hol combin
Defimplies[himplies]hol min
Deff o g[compose]fun 1
Defx:AB(x)[exists]core
DefP  Q[or]core
Defrep_sum[hrep_sum]
Defpq[bimplies]bool 1
Defb[bnot]bool 1
Defx = y[bequal]hol
Defpq[band]bool 1
Def[bool]bool 1
Defx:Tb(x)[tlambda]fun 1
Def@x:TP(x)[choose]hol
Defisl(x)[isl]union
Defisr(x)[isr]hol
Defarb(T)[arb]hol
Defp  q[bor]bool 1
DefP[prop_to_bool]hol
DefP  Q[iff]core
DefP  Q[rev_implies]core

About:
productproductboolbfalsebtrueifthenelseassertunittokenunion
inlinrdecidesetlambdaapply
functionuniverseequalimpliesandorfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol sum HOLlib Doc