| Who Cites his sum rep? |
|
his_sum_rep | Def is_sum_rep == f:  'a 'b  .  u:'a+'b. (f = (rep_sum(u))) |
| | Thm* 'a,'b:S. is_sum_rep ((hbool  'a  'b  hbool)  hbool) |
|
hrep_sum | Def rep_sum
Def == u:'a+'b. InjCase(u
Def == u:'a+'b. InjCase; p. b: . x:'a. y:'b. (x = p) b
Def == u:'a+'b. InjCase; q. b: . x:'a. y:'b. (y = q)   b) |
| | Thm* 'a,'b:S. rep_sum (hsum('a; 'b)  hbool  'a  'b  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |