| | Some definitions of interest. |
|
| hrep_sum | Def rep_sum
Def == u:'a+'b. InjCase(u
Def == u:'a+'b. InjCase; p. b: . x:'a. y:'b. (x = p) b
Def == u:'a+'b. InjCase; q. b: . x:'a. y:'b. (y = q)   b) |
| | | Thm* 'a,'b:S. rep_sum (hsum('a; 'b)  hbool  'a  'b  hbool) |
|
| band | Def p q == if p q else false fi |
| | | Thm* p,q: . (p q)  |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
| bnot | Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| bor | Def p  q == if p true else q fi |
| | | Thm* p,q: . (p  q)  |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |