| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hinr | Def inr == x:'b. inr(x) |
| | Thm* 'b,'a:S. inr ('b  hsum('a; 'b)) |
|
houtr | Def outr == u:'a+'b. InjCase(u; x. arb('b), x) |
| | Thm* 'a,'b:S. outr (hsum('a; 'b)  'b) |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |