| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
hexists_unique | Def exists_unique == p:'a  . b_exists_unique('a;x.p(x)) |
| | Thm* 'a:S. exists_unique (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hinl | Def inl == x:'a. inl(x) |
| | Thm* 'a,'b:S. inl ('a  hsum('a; 'b)) |
|
hinr | Def inr == x:'b. inr(x) |
| | Thm* 'b,'a:S. inr ('b  hsum('a; 'b)) |
|
hsum | Def hsum('a; 'b) == 'a+'b |
| | Thm* 'a,'b:S. hsum('a; 'b) S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |