| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hisl | Def isl == u:'a+'b. isl(u) |
| | | Thm* 'a,'b:S. isl (hsum('a; 'b)  hbool) |
|
| hisr | Def isr == u:'a+'b. isr(u) |
| | | Thm* 'a,'b:S. isr (hsum('a; 'b)  hbool) |
|
| hor | Def or == p: . q: . p  q |
| | | Thm* or (hbool  hbool  hbool) |
|
| hsum | Def hsum('a; 'b) == 'a+'b |
| | | Thm* 'a,'b:S. hsum('a; 'b) S |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |