| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| hexists_unique | Def exists_unique == p:'a  . b_exists_unique('a;x.p(x)) |
| | | Thm* 'a:S. exists_unique (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| ho | Def o == f:'a 'b. g:'a 'b. f o g |
| | | Thm* 'b,'c,'a:S. o (('b  'c)  ('a  'b)  'a  'c) |
|
| compose | Def (f o g)(x) == f(g(x)) |
| | | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
| hand | Def and == p: . q: . p q |
| | | Thm* and (hbool  hbool  hbool) |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| hinl | Def inl == x:'a. inl(x) |
| | | Thm* 'a,'b:S. inl ('a  hsum('a; 'b)) |
|
| hinr | Def inr == x:'b. inr(x) |
| | | Thm* 'b,'a:S. inr ('b  hsum('a; 'b)) |
|
| hsum | Def hsum('a; 'b) == 'a+'b |
| | | Thm* 'a,'b:S. hsum('a; 'b) S |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |