IteratedBinops Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def   == {i:| 0i }

is mentioned by

Thm*  m,k:mk  k!m = ((k!)  ((k-m)!))[factorial_ratio2]
Thm*  m,k:mk  k! = (k-m)!k!m[factorial_ratio]
Thm*  k:k [factorial_via_iter_wf]
Thm*  m,k:. 1  m  k  k!m = k(k-1)!(m-1)  [factorial_tail_via_iter_step_rw]
Thm*  m,k:. 1  m  k  (k',m':k' = k-1  m' = m-1  k!m = kk'!m'  )[factorial_tail_via_iter_step]
Thm*  m,k:k<m  k!m = 0  [factorial_tail_via_iter_zero]
Thm*  m,k:m = 0    k!m = 1  [factorial_tail_via_iter_null]
Thm*  n,m,k:nk-m  mk  k!(n+m) = (k-m)!nk!m[factorial_tail_split_mid]
Thm*  m,k:k!m  [factorial_tail_via_iter_wf]
Thm*  e:({a..b}). ( i:{a..b}. e(i)) = 1  (i:{a..b}. e(i) = 1)[iter_nat_prod_one_iff_factors_one]
Thm*  a,b,c:. (ab)c = acbc[exp_reduce1]
Thm*  i:x,y:ixiy = i(x+y)[sum_exponent]
Thm*  is_ident(; (x,yx+y); 0)[natadd_ident_zero]
Thm*  is_ident(; (x,yxy); 1)[natmul_ident_one]

In prior sections: int 1 bool 1 int 2 num thy 1 SimpleMulFacts

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

IteratedBinops Sections DiscrMathExt Doc