Definitions list 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
firstnDef firstn(n;as)
Def == Case of as; nil  nil ; a.as'  if 0<n a.firstn(n-1;as') else nil fi
Def (recursive)
Thm* A:Type, as:A List, n:. firstn(n;as A List
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
selectDef l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n  n<||l||  l[n A

About:
listconsnillist_ind
ifthenelseintnatural_numberaddsubtractless_thanset
recursive_def_noticeuniversememberpropimpliesall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions list 1 Sections StandardLIB Doc