Thms list 3 autom Sections AutomataTheory Doc

segment Def as[m..n] == firstn(n-m;nth_tl(m;as))

Thm* T:Type, as:T*, m,n:. (as[m..n]) T*

nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)

Thm* A:Type, as:A*, i:. nth_tl(i;as) A*

firstn Def firstn(n;as) == Case of as; nil nil ; a.as' if 0 < n a.firstn(n-1;as') else nil fi (recursive)

Thm* A:Type, as:A*, n:. firstn(n;as) A*

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

le_int Def ij == j < i

Thm* i,j:. ij

lt_int Def i < j == if i < j true ; false fi

Thm* i,j:. i < j

bnot Def b == if b false else true fi

Thm* b:. b

About:
!abstractionifthenelsebfalsebtrueallbool
memberlessintlist_indniluniverse
listrecursive_def_noticenatural_numberconssubtract