WhoCites Definitions mb automata 2 Sections GenAutomata Doc

Who Cites tc1?
tc1 Def tc1(r;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 Case R = > ||de.rel(R)|| = ||r.args|| Default = > False
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
rel Def rel() == relname()(Term List)
Thm* rel() Type
rel_arg_typ Def rel_arg_typ(rn;i;de) == Case(rn) Case eq(Q) = > Q Case R = > (de.rel(R))[i] Default = > False
Thm* r:rel(), de:sig(), i:. tc1(r;de) i < ||r.args|| rel_arg_typ(r.name;i;de) SimpleType
rel_args Def t.args == 2of(t)
Thm* t:rel(). t.args Term List
rel_name Def t.name == 1of(t)
Thm* t:rel(). t.name relname()
sig Def sig() == (LabelSimpleType)(Label(SimpleType List))
Thm* sig() Type
relname Def relname() == SimpleType+Label
Thm* relname() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
term Def Term == Tree(ts())
Thm* Term Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
case_default Def Default = > body(value,value) == body
sig_rel Def t.rel == 2of(t)
Thm* t:sig(). t.rel Label(SimpleType List)
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
case_relname_other Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1])
case_relname_eq Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case Def Case(value) body == body(value,value)
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
not Def A == A False
Thm* A:Prop. (A) Prop
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
le_int Def ij == j < i
Thm* i,j:. (ij)
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))

About:
spreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelseassert
unitintnatural_numberaddsubtractlessless_thanatomtokenunion
decidesetlambdaapplyfunction
recursive_def_noticerecuniverseequalmemberpropimpliesfalsetrue
all!abstraction

WhoCites Definitions mb automata 2 Sections GenAutomata Doc