Who Cites tc1? | |
tc1 | Def tc1(r;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 Case R = > ||de.rel(R)|| = ||r.args|| Default = > False |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
nat | Def == {i:| 0i } |
Thm* Type | |
rel | Def rel() == relname()(Term List) |
Thm* rel() Type | |
rel_arg_typ | Def rel_arg_typ(rn;i;de) == Case(rn) Case eq(Q) = > Q Case R = > (de.rel(R))[i] Default = > False |
Thm* r:rel(), de:sig(), i:. tc1(r;de) i < ||r.args|| rel_arg_typ(r.name;i;de) SimpleType | |
rel_args | Def t.args == 2of(t) |
Thm* t:rel(). t.args Term List | |
rel_name | Def t.name == 1of(t) |
Thm* t:rel(). t.name relname() | |
sig | Def sig() == (LabelSimpleType)(Label(SimpleType List)) |
Thm* sig() Type | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
case_default | Def Default = > body(value,value) == body |
sig_rel | Def t.rel == 2of(t) |
Thm* t:sig(). t.rel Label(SimpleType List) | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
case_relname_other | Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case | Def Case(value) body == body(value,value) |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
About: