WhoCites Definitions mb automata 2 Sections GenAutomata Doc

Who Cites vc?
vc Def vc{i:l}() == imp{i:l}()+qimp{i:l}()
Thm* vc{i:l}() Type{i'}
qimp Def qimp{i:l}() == LabelFmlaFmla
Thm* qimp{i:l}() Type{i'}
imp Def imp{i:l}() == FmlaFmla
Thm* imp{i:l}() Type{i'}
pred Def Fmla == Collection(rel())
Thm* Fmla{i} Type{i'}
vc_concl Def vc_concl(v) == Case(v) Case vc_imp(x) = > x.concl Case vc_qimp(x) = > x.concl Default = > False
Thm* v:vc{i:l}(). vc_concl(v) Fmla
rel Def rel() == relname()(Term List)
Thm* rel() Type
col Def Collection(T) == TProp
Thm* T:Type{i'}. Collection{i}(T) Type{i'}
term Def Term == Tree(ts())
Thm* Term Type
relname Def relname() == SimpleType+Label
Thm* relname() Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
case_default Def Default = > body(value,value) == body
qimp_concl Def t.concl == 2of(2of(t))
Thm* t:qimp{i:l}(). t.concl Fmla
case_vc_qimp Def Case vc_qimp(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1])
imp_concl Def t.concl == 2of(t)
Thm* t:imp{i:l}(). t.concl Fmla
case_vc_imp Def Case vc_imp(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case Def Case(value) body == body(value,value)
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))

About:
spreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrue
ifthenelseassertunitintnatural_numberatomtokenunion
decidesetlambdaapplyfunction
recursive_def_noticerecuniversememberpropimpliesfalsetrue
all!abstraction

WhoCites Definitions mb automata 2 Sections GenAutomata Doc