WhoCites Definitions mb automata 2 Sections GenAutomata Doc

Who Cites action effect?
action_effectDef action_effect(a;es;fs) == < e.smt | e < e es | e.kind = a > > + < mk_smt(f.var, f.var, f.typ) | f < f fs | a f.acts > >
Thm* a:Label, es:Collection(eff()), fs:Collection(frame()). action_effect(a;es;fs) Collection(smt())
frame_typ Def t.typ == 1of(2of(t))
Thm* t:frame(). t.typ SimpleType
frame_var Def t.var == 1of(t)
Thm* t:frame(). t.var Label
tvar Def l == tree_leaf(ts_var(l))
Thm* l:Label. l Term
mk_smt Def mk_smt(lbl, term, typ) == < lbl,term,typ >
Thm* lbl:Label, term:Term, typ:SimpleType. mk_smt(lbl, term, typ) smt()
frame_acts Def t.acts == 2of(2of(t))
Thm* t:frame(). t.acts Label List
lbls_member Def x ls == reduce(a,b. x = a b;false;ls)
Thm* x:Label, ls:Label List. x ls
bnot Def b == if b false else true fi
Thm* b:. b
eff Def eff() == LabelLabelSimpleTypesmt()
Thm* eff() Type
smt Def smt() == LabelTermSimpleType
Thm* smt() Type
frame Def frame() == LabelSimpleType(Label List)
Thm* frame() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
term Def Term == Tree(ts())
Thm* Term Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
assert Def b == if b True else False fi
Thm* b:. b Prop
col_filter Def < x c | P(x) > (x) == x c & P(x)
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T)
col_map Def < f(x) | x c > (y) == x:T. x c & y = f(x) T'
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T')
eff_smt Def t.smt == 2of(2of(2of(t)))
Thm* t:eff(). t.smt smt()
eff_kind Def t.kind == 1of(t)
Thm* t:eff(). t.kind Label
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
col_add Def (a + b)(x) == x a x b
Thm* T:Type, a,b:Collection(T). (a + b) Collection(T)
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
ts_var Def ts_var(x) == inl(x)
Thm* x:Label. ts_var(x) ts()
tree_leaf Def tree_leaf(x) == inl(x)
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T)
Thm* E:Type, x:E. tree_leaf(x) Tree(E)
bor Def p q == if p true else q fi
Thm* p,q:. (p q)
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
col_member Def x c == c(x)
Thm* T:Type, x:T, c:Collection(T). x c Prop
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case Def Case(value) body == body(value,value)
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type

Syntax:action_effect(a;es;fs) has structure: action_effect(a; es; fs)

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertunitintnatural_numberint_eqatomtokenatom_eq
unioninldecidesetlambdaapply
functionrecursive_def_noticerecuniverseequalmemberprop
impliesandorfalsetrueallexists!abstraction

WhoCites Definitions mb automata 2 Sections GenAutomata Doc