Who Cites covers var? | |
covers_var | Def covers_var(A;x) == fr:frame(). fr < fr A.frame | fr.var = x > & (a:Label. (a fr.acts) (ef:eff(). ef < ef A.eff | ef.kind = a & ef.smt.lbl = x > )) |
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
eff_smt | Def t.smt == 2of(2of(2of(t))) |
Thm* t:eff(). t.smt smt() | |
smt_lbl | Def t.lbl == 1of(t) |
Thm* t:smt(). t.lbl Label | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
eff | Def eff() == LabelLabelSimpleTypesmt() |
Thm* eff() Type | |
frame | Def frame() == LabelSimpleType(Label List) |
Thm* frame() Type | |
smt | Def smt() == LabelTermSimpleType |
Thm* smt() Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
eff_kind | Def t.kind == 1of(t) |
Thm* t:eff(). t.kind Label | |
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T) | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
frame_acts | Def t.acts == 2of(2of(t)) |
Thm* t:frame(). t.acts Label List | |
l_member | Def (x l) == i:. i < ||l|| & x = l[i] T |
Thm* T:Type, x:T, l:T List. (x l) Prop | |
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
frame_var | Def t.var == 1of(t) |
Thm* t:frame(). t.var Label | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
nat | Def == {i:| 0i } |
Thm* Type | |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b |
Syntax: | covers_var(A;x) | has structure: | covers_var(A; x) |
About: