| Who Cites action effect? |
|
action_effect | Def action_effect(a;es;fs)
== < e.smt | e < e es | e.kind = a > >
+ < mk_smt(f.var, f.var, f.typ) | f < f fs | a f.acts > > |
| | Thm* a:Label, es:Collection(eff()), fs:Collection(frame()).
action_effect(a;es;fs) Collection(smt()) |
|
frame_typ |
Def t.typ == 1of(2of(t)) |
| |
Thm* t:frame(). t.typ SimpleType |
|
frame_var |
Def t.var == 1of(t) |
| |
Thm* t:frame(). t.var Label |
|
tvar |
Def l == tree_leaf(ts_var(l)) |
| | Thm* l:Label. l Term |
|
mk_smt |
Def mk_smt(lbl, term, typ) == < lbl,term,typ > |
| | Thm* lbl:Label, term:Term, typ:SimpleType. mk_smt(lbl, term, typ) smt() |
|
frame_acts |
Def t.acts == 2of(2of(t)) |
| |
Thm* t:frame(). t.acts Label List |
|
lbls_member |
Def x ls == reduce(a,b. x = a b;false;ls) |
| | Thm* x:Label, ls:Label List. x ls |
|
bnot |
Def b == if b false else true fi |
| | Thm* b:. b |
|
eff |
Def eff() == LabelLabelSimpleTypesmt() |
| | Thm* eff() Type |
|
smt |
Def smt() == LabelTermSimpleType |
| | Thm* smt() Type |
|
frame |
Def frame() == LabelSimpleType(Label List) |
| | Thm* frame() Type |
|
st |
Def SimpleType == Tree(Label+Unit) |
| | Thm* SimpleType Type |
|
term |
Def Term == Tree(ts()) |
| | Thm* Term Type |
|
ts |
Def ts() == Label+Label+Label+Label+Label |
| | Thm* ts() Type |
|
lbl |
Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
assert |
Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
col_filter |
Def < x c | P(x) > (x) == x c & P(x) |
| | Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T) |
|
col_map |
Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
| | Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T') |
|
eff_smt |
Def t.smt == 2of(2of(2of(t))) |
| |
Thm* t:eff(). t.smt smt() |
|
eff_kind |
Def t.kind == 1of(t) |
| |
Thm* t:eff(). t.kind Label |
|
eq_lbl |
Def l1 = l2
== Case(l1)
Case ptn_atom(x) = >
Case(l2)
Case ptn_atom(y) = >
x=yAtom
Default = > false
Case ptn_int(x) = >
Case(l2)
Case ptn_int(y) = >
x=y
Default = > false
Case ptn_var(x) = >
Case(l2)
Case ptn_var(y) = >
x=yAtom
Default = > false
Case ptn_pr( < x, y > ) = >
Case(l2)
Case ptn_pr( < u, v > ) = >
x = uy = v
Default = > false
Default = > false
(recursive) |
| |
Thm* l1,l2:Pattern. l1 = l2 |
|
col_add |
Def (a + b)(x) == x a x b |
| | Thm* T:Type, a,b:Collection(T). (a + b) Collection(T) |
|
pi2 |
Def 2of(t) == t.2 |
| |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) |
|
pi1 |
Def 1of(t) == t.1 |
| | Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A |
|
ts_var |
Def ts_var(x) == inl(x) |
| | Thm* x:Label. ts_var(x) ts() |
|
tree_leaf |
Def tree_leaf(x) == inl(x) |
| | Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) |
| |
Thm* E:Type, x:E. tree_leaf(x) Tree(E) |
|
bor |
Def p q == if p true else q fi |
| | Thm* p,q:. (p q) |
|
reduce |
Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
| |
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B |
|
col_member |
Def x c == c(x) |
| | Thm* T:Type, x:T, c:Collection(T). x c Prop |
|
ground_ptn |
Def ground_ptn(p)
== Case(p)
Case ptn_var(v) = >
false
Case ptn_pr( < x, y > ) = >
ground_ptn(x)ground_ptn(y)
Default = > true
(recursive) |
| |
Thm* p:Pattern. ground_ptn(p) |
|
case_default |
Def Default = > body(value,value) == body |
|
band |
Def pq == if p q else false fi |
| | Thm* p,q:. (pq) |
|
case_lbl_pair |
Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case |
Def Case(value) body == body(value,value) |
|
eq_atom |
Def x=yAtom == if x=yAtomtrue; false fi |
| | Thm* x,y:Atom. x=yAtom |
|
case_ptn_var |
Def Case ptn_var(x) = > body(x) cont(x1,z)
== (x1.inr(x2) = >
(x1.inr(x2) = >
(x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
eq_int |
Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
case_ptn_int |
Def Case ptn_int(x) = > body(x) cont(x1,z)
== (x1.inr(x2) = >
(x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
case_ptn_atom |
Def Case ptn_atom(x) = > body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
tree |
Def Tree(E) == rec(T.tree_con(E;T)) |
| |
Thm* E:Type. Tree(E) Type |
|
ptn |
Def Pattern == rec(T.ptn_con(T)) |
| |
Thm* Pattern Type |
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h |
| |
Thm* A:Type, l:A List. ||l||1 hd(l) A |
| |
Thm* A:Type, l:A List. hd(l) A |
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t |
| |
Thm* A:Type, l:A List. tl(l) A List |
|
case_inl |
Def inl(x) = > body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr |
Def inr(x) = > body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
tree_con |
Def tree_con(E;T) == E+(TT) |
| | Thm* E,T:Type. tree_con(E;T) Type |
|
ptn_con |
Def ptn_con(T) == Atom++Atom+(TT) |
| | Thm* T:Type. ptn_con(T) Type |