WhoCites Definitions mb automata 3 Sections GenAutomata Doc

Who Cites col subst?
col_substDef col_subst(c;r) == col_map_subst(as.rel_subst(as;r); < zip(rel_vars(r);s) | s col_list_prod(map(c;rel_vars(r))) > )
Thm* c:(LabelCollection(Term)), r:rel(). col_subst(c;r) Fmla
Thm* c:(LabelCollection(Term)), r:rel(). col_subst(c;r) Collection(rel())
rel_vars Def rel_vars(r) == reduce(t,vs. term_vars(t) @ vs;nil;r.args)
Thm* r:rel(). rel_vars(r) Label List
zip Def zip(as;bs) == Case of as nil nil a.as' Case of bs; nil nil ; b.bs' [ < a,b > / zip(as';bs')] (recursive)
Thm* T1,T2:Type, as:T1 List, bs:T2 List. zip(as;bs) (T1T2) List
rel_subst Def rel_subst(as;r) == mk_rel(r.name, map(t.term_subst(as;t);r.args))
Thm* r:rel(), as:(LabelTerm) List. rel_subst(as;r) rel()
map Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
col_list_prod Def col_list_prod(l)(x) == ||x|| = ||l|| & (i:. i < ||x|| x[i] l[i])
Thm* T:Type, l:Collection(T) List. col_list_prod(l) Collection(T List)
col_map_subst Def col_map_subst(x.f(x);c) == < f(x) | x c >
Thm* f:(((LabelTerm) List)rel()), c:Collection((LabelTerm) List). col_map_subst(x.f(x);c) Collection(rel())
rel Def rel() == relname()(Term List)
Thm* rel() Type
term Def Term == Tree(ts())
Thm* Term Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
relname Def relname() == SimpleType+Label
Thm* relname() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
col_map Def < f(x) | x c > (y) == x:T. x c & y = f(x) T'
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T')
rel_args Def t.args == 2of(t)
Thm* t:rel(). t.args Term List
term_vars Def term_vars(t) == iterate(statevar v- > [v] statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t)
Thm* t:Term. term_vars(t) Label List
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
term_subst Def term_subst(as;t) == iterate(statevar v- > apply_alist(as;v;v) statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t)
Thm* t:Term, as:(LabelTerm) List. term_subst(as;t) Term
apply_alist Def apply_alist(as;l;d) == 2of((first p as s.t. 1of(p) = l else < l,d > ))
Thm* T:Type, as:(LabelT) List, l:Label, d:T. apply_alist(as;l;d) T
find Def (first x as s.t. P(x) else d) == Case of filter(x.P(x);as); nil d ; a.b a
Thm* T:Type, P:(T), as:T List, d:T. (first a as s.t. P(a) else d) T
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
col_member Def x c == c(x)
Thm* T:Type, x:T, c:Collection(T). x c Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
rel_name Def t.name == 1of(t)
Thm* t:rel(). t.name relname()
mk_rel Def mk_rel(name, args) == < name,args >
Thm* name:relname(), args:Term List. mk_rel(name, args) rel()
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
term_iter Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t)
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
term_iterate Def term_iterate(v; p; op; f; tr; a; t) == t_iterate(x.ts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(c)= > op(c) fvar(d)= > f(d) trace(P)= > tr(P) end_ts_case ;a;t)
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A
ts_case Def ts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(f)= > op(f) fvar(x)= > f(x) trace(P)= > t(P) end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = >
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_trace Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_fvar Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_op Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_pvar Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
le Def AB == B < A
Thm* i,j:. (ij) Prop
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
t_iterate Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive)
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case Def Case(value) body == body(value,value)
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
tapp Def t1 t2 == tree_node( < t1, t2 > )
Thm* t1,t2:Term. t1 t2 Term
ttrace Def trace(l) == tree_leaf(ts_trace(l))
Thm* l:Label. trace(l) Term
tfvar Def l == tree_leaf(ts_fvar(l))
Thm* l:Label. l Term
topr Def f == tree_leaf(ts_op(f))
Thm* f:Label. f Term
tpvar Def l' == tree_leaf(ts_pvar(l))
Thm* l:Label. l' Term
tvar Def l == tree_leaf(ts_var(l))
Thm* l:Label. l Term
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
not Def A == A False
Thm* A:Prop. (A) Prop
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
node Def tree_node( < x, y > ) == tree_node( < x,y > )
Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E)
ts_trace Def ts_trace(x) == inr(inr(inr(inr(x))))
Thm* x:Label. ts_trace(x) ts()
tree_leaf Def tree_leaf(x) == inl(x)
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T)
Thm* E:Type, x:E. tree_leaf(x) Tree(E)
ts_fvar Def ts_fvar(x) == inr(inr(inr(inl(x))))
Thm* x:Label. ts_fvar(x) ts()
ts_op Def ts_op(x) == inr(inr(inl(x)))
Thm* x:Label. ts_op(x) ts()
ts_pvar Def ts_pvar(x) == inr(inl(x))
Thm* x:Label. ts_pvar(x) ts()
ts_var Def ts_var(x) == inl(x)
Thm* x:Label. ts_var(x) ts()
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
tree_node Def tree_node(x) == inr(x)
Thm* E,T:Type, x:(TT). tree_node(x) tree_con(E;T)
Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E)
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_ts_var Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_tree_leaf Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_node Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0))

Syntax:col_subst(c;r) has structure: col_subst(c; r)

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelseassert
unititintnatural_numberaddsubtractint_eqlessless_thanatom
tokenatom_equnioninlinrdecide
setlambdaapplyfunctionrecursive_def_noticerecuniverse
equalmemberpropimpliesandfalsetrueallexists!abstraction

WhoCites Definitions mb automata 3 Sections GenAutomata Doc