WhoCites Definitions mb automata 3 Sections GenAutomata Doc

Who Cites tc?
tcDef tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & (i:. i < ||r.args|| (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False
Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop
term_types Def term_types(ds;da;de;t) == iterate(statevar x- > dec_lookup(ds;x) statevar x'- > dec_lookup(ds;x) funsymbol op- > < de.fun(op) > freevar x- > da trace(P)- > < lbl_pr( < Trace, P > ) > c1(c2)- > st_app(c1;c2) over t)
Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType)
st_app Def st_app(c1;c2) == (s2c2.(s1c1.st_app1(s1;s2)))
Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType)
dec_lookup Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > >
Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType)
st_app1 Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < >
Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType)
dec Def dec() == LabelSimpleType
Thm* dec() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
term_iter Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t)
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
st_eq Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a')st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false); a. InjCase(y; y'. false; b. true)) Default = > false Default = > false (recursive)
Thm* s1,s2:SimpleType. st_eq(s1;s2)
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
term_iterate Def term_iterate(v; p; op; f; tr; a; t) == t_iterate(x.ts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(c)= > op(c) fvar(d)= > f(d) trace(P)= > tr(P) end_ts_case ;a;t)
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
ts_case Def ts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(f)= > op(f) fvar(x)= > f(x) trace(P)= > t(P) end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = >
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A
t_iterate Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive)
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A
case_default Def Default = > body(value,value) == body
rel_args Def t.args == 2of(t)
Thm* t:rel(). t.args Term List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
sig_rel Def t.rel == 2of(t)
Thm* t:sig(). t.rel Label(SimpleType List)
col_accum Def (xc.f(x))(y) == x:T. x c & y f(x)
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T')
col_filter Def < x c | P(x) > (x) == x c & P(x)
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T)
col_map Def < f(x) | x c > (y) == x:T. x c & y = f(x) T'
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T')
col_member Def x c == c(x)
Thm* T:Type, x:T, c:Collection(T). x c Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
case_relname_other Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1])
case_relname_eq Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
rel_name Def t.name == 1of(t)
Thm* t:rel(). t.name relname()
case Def Case(value) body == body(value,value)
dec_typ Def t.typ == 2of(t)
Thm* t:dec(). t.typ SimpleType
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_trace Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_fvar Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_op Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ts_pvar Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
clbl Def $x == ptn_atom("$x")
lbl_pair Def lbl_pr( < x, y > ) == ptn_pr( < x,y > )
Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern
Thm* x,y:Label. lbl_pr( < x, y > ) Label
typ Def t == tree_leaf(inl(t))
Thm* t:Label. t SimpleType
col_singleton Def < x > (y) == y = x T
Thm* T:Type, x:T. < x > Collection(T)
sig_fun Def t.fun == 1of(t)
Thm* t:sig(). t.fun LabelSimpleType
le Def AB == B < A
Thm* i,j:. (ij) Prop
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
dec_lbl Def t.lbl == 1of(t)
Thm* t:dec(). t.lbl Label
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
le_int Def ij == j < i
Thm* i,j:. (ij)
ptn_atom Def ptn_atom(x) == inl(x)
Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T)
Thm* x:Atom. ptn_atom(x) Pattern
Thm* x:Atom. ptn_atom(x) Label
ptn_pr Def ptn_pr(x) == inr(inr(inr(x)))
Thm* T:Type, x:(TT). ptn_pr(x) ptn_con(T)
Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern
tree_leaf Def tree_leaf(x) == inl(x)
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T)
Thm* E:Type, x:E. tree_leaf(x) Tree(E)
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
assert Def b == if b True else False fi
Thm* b:. b Prop
not Def A == A False
Thm* A:Prop. (A) Prop
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
col_none Def < > (x) == False
Thm* T:Type. < > Collection(T)
case_node Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0))
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_tree_leaf Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_ts_var Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))

Syntax:tc(r;ds;da;de) has structure: tc(r; ds; da; de)

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelseassert
unititintnatural_numberaddsubtractint_eqlessless_thanatom
tokenatom_equnioninlinrdecide
setlambdaapplyfunctionrecursive_def_noticerecuniverse
equalmemberpropimpliesandfalsetrueallexists!abstraction

WhoCites Definitions mb automata 3 Sections GenAutomata Doc