| Who Cites wp? | |
| wp | Def wp(A;a;Q) == smts_eff_pred(action_effect(a;A.eff;A.frame);Q) |
| Thm* | |
| wp2 | Def wp2(A;a;Q) == ( |
| Thm* | |
| action_effect | Def action_effect(a;es;fs) == < e.smt | e |
| Thm* | |
| col_equal | Def c1 = c2 == |
| Thm* | |
| smts_eff_pred | Def smts_eff_pred(ss;p) == ( |
| Thm* | |
| smts_eff_rel | Def smts_eff_rel(ss;r) == col_subst( |
| Thm* | |
| col_subst | Def col_subst(c;r) == col_map_subst(as.rel_subst(as;r); < zip(rel_vars(r);s) | s |
| Thm* | |
| Thm* | |
| col_subst2 | Def col_subst2(c;r) == col_map_subst(as.rel_subst2(as;r); < zip(rel_primed_vars(r);s) | s |
| Thm* | |
| pred_addprime | Def (P)' == ( |
| Thm* | |
| smts_eff | Def smts_eff(ss;x) == smt_terms( < s |
| Thm* | |
| col_filter | Def < x |
| Thm* | |
| col_map_subst | Def col_map_subst(x.f(x);c) == < f(x) | x |
| Thm* | |
| smt_terms | Def smt_terms(c) == < s.term | s |
| Thm* | |
| col_map | Def < f(x) | x |
| Thm* | |
| col_add | Def (a + b)(x) == x |
| Thm* | |
| col_list_prod | Def col_list_prod(l)(x) == ||x|| = ||l|| |
| Thm* | |
| col_accum | Def ( |
| Thm* | |
| col_member | Def x |
| Thm* | |
| iff | Def P |
| Thm* | |
| ioa | Def ioa{i:l}() == Collection(dec()) |
| Thm* ioa{i:l}() | |
| ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
| Thm* | |
| ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
| Thm* | |
| pred | Def Fmla == Collection(rel()) |
| Thm* Fmla{i} | |
| pre | Def pre() == Label |
| Thm* pre() | |
| rel | Def rel() == relname() |
| Thm* rel() | |
| eff | Def eff() == Label |
| Thm* eff() | |
| smt | Def smt() == Label |
| Thm* smt() | |
| frame | Def frame() == Label |
| Thm* frame() | |
| term | Def Term == Tree(ts()) |
| Thm* Term | |
| dec | Def dec() == Label |
| Thm* dec() | |
| relname | Def relname() == SimpleType+Label |
| Thm* relname() | |
| st | Def SimpleType == Tree(Label+Unit) |
| Thm* SimpleType | |
| ts | Def ts() == Label+Label+Label+Label+Label |
| Thm* ts() | |
| lbl | Def Label == {p:Pattern| |
| Thm* Label | |
| frame_typ | Def t.typ == 1of(2of(t)) |
| Thm* | |
| frame_var | Def t.var == 1of(t) |
| Thm* | |
| rel_subst | Def rel_subst(as;r) == mk_rel(r.name, map( |
| Thm* | |
| rel_subst2 | Def rel_subst2(as;r) == mk_rel(r.name, map( |
| Thm* | |
| term_subst | Def term_subst(as;t) == iterate(statevar v- > apply_alist(as;v;v) statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t) |
| Thm* | |
| term_subst2 | Def term_subst2(as;t) == iterate(statevar v- > v statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t) |
| Thm* | |
| tvar | Def l == tree_leaf(ts_var(l)) |
| Thm* | |
| mk_smt | Def mk_smt(lbl, term, typ) == < lbl,term,typ > |
| Thm* | |
| frame_acts | Def t.acts == 2of(2of(t)) |
| Thm* | |
| lbls_member | Def x |
| Thm* | |
| select | Def l[i] == hd(nth_tl(i;l)) |
| Thm* | |
| nth_tl | Def nth_tl(n;as) == if n |
| Thm* | |
| le_int | Def i |
| Thm* | |
| bnot | Def |
| Thm* | |
| assert | Def |
| Thm* | |
| eff_smt | Def t.smt == 2of(2of(2of(t))) |
| Thm* | |
| eff_kind | Def t.kind == 1of(t) |
| Thm* | |
| apply_alist | Def apply_alist(as;l;d) == 2of((first p |
| Thm* | |
| eq_lbl | Def l1 = |
| Thm* | |
| rel_vars | Def rel_vars(r) == reduce( |
| Thm* | |
| zip | Def zip(as;bs) == Case of as; nil |
| Thm* | |
| rel_addprime | Def (r)' == mk_rel(r.name, map( |
| Thm* | |
| map | Def map(f;as) == Case of as; nil |
| Thm* | |
| Thm* | |
| rel_primed_vars | Def rel_primed_vars(r) == reduce( |
| Thm* | |
| rev_implies | Def P |
| Thm* | |
| col | Def Collection(T) == T |
| Thm* | |
| rel_args | Def t.args == 2of(t) |
| Thm* | |
| smt_term | Def t.term == 1of(2of(t)) |
| Thm* | |
| pi2 | Def 2of(t) == t.2 |
| Thm* | |
| smt_lbl | Def t.lbl == 1of(t) |
| Thm* | |
| rel_name | Def t.name == 1of(t) |
| Thm* | |
| pi1 | Def 1of(t) == t.1 |
| Thm* | |
| ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false |
| Thm* | |
| ptn | Def Pattern == rec(T.ptn_con(T)) |
| Thm* Pattern | |
| col_singleton | Def < x > (y) == y = x |
| Thm* | |
| ts_var | Def ts_var(x) == inl(x) |
| Thm* | |
| addprime | Def (t)' == term_iterate( |
| Thm* | |
| ttrace | Def trace(l) == tree_leaf(ts_trace(l)) |
| Thm* | |
| tfvar | Def l == tree_leaf(ts_fvar(l)) |
| Thm* | |
| topr | Def f == tree_leaf(ts_op(f)) |
| Thm* | |
| tpvar | Def l' == tree_leaf(ts_pvar(l)) |
| Thm* | |
| tree_leaf | Def tree_leaf(x) == inl(x) |
| Thm* | |
| Thm* | |
| bor | Def p |
| Thm* | |
| find | Def (first x |
| Thm* | |
| filter | Def filter(P;l) == reduce( |
| Thm* | |
| reduce | Def reduce(f;k;as) == Case of as; nil |
| Thm* | |
| term_vars | Def term_vars(t) == iterate(statevar v- > [v] statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t) |
| Thm* | |
| term_primed_vars | Def term_primed_vars(t) == iterate(statevar v- > nil statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t) |
| Thm* | |
| term_iter | Def iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a;b)
over t)
== term_iterate( |
| Thm* | |
| term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate( |
| Thm* | |
| ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
| Thm* | |
| t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
| Thm* | |
| case_default | Def Default = > body(value,value) == body |
| band | Def p |
| Thm* | |
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
| case | Def Case(value) body == body(value,value) |
| eq_atom | Def x= |
| Thm* | |
| case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( |
| eq_int | Def i= |
| Thm* | |
| case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( |
| case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| append | Def as @ bs == Case of as; nil |
| Thm* | |
| length | Def ||as|| == Case of as; nil |
| Thm* | |
| Thm* ||nil|| | |
| nat | Def |
| Thm* | |
| tree | Def Tree(E) == rec(T.tree_con(E;T)) |
| Thm* | |
| mk_rel | Def mk_rel(name, args) == < name,args > |
| Thm* | |
| ptn_con | Def ptn_con(T) == Atom+ |
| Thm* | |
| case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == ( |
| case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == ( |
| case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == ( |
| case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == ( |
| hd | Def hd(l) == Case of l; nil |
| Thm* | |
| Thm* | |
| tl | Def tl(l) == Case of l; nil |
| Thm* | |
| case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
| case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
| le | Def A |
| Thm* | |
| tree_con | Def tree_con(E;T) == E+(T |
| Thm* | |
| tapp | Def t1 t2 == tree_node( < t1, t2 > ) |
| Thm* | |
| not | Def |
| Thm* | |
| node | Def tree_node( < x, y > ) == tree_node( < x,y > ) |
| Thm* | |
| ts_trace | Def ts_trace(x) == inr(inr(inr(inr(x)))) |
| Thm* | |
| ts_fvar | Def ts_fvar(x) == inr(inr(inr(inl(x)))) |
| Thm* | |
| ts_op | Def ts_op(x) == inr(inr(inl(x))) |
| Thm* | |
| ts_pvar | Def ts_pvar(x) == inr(inl(x)) |
| Thm* | |
| lt_int | Def i < |
| Thm* | |
| tree_node | Def tree_node(x) == inr(x) |
| Thm* | |
| Thm* | |
| case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
| case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
About: