|  | Who Cites tc? | 
|  | 
| tc | Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = >  ||r.args|| = 2    &  Q  term_types(ds;da;de;r.args[0])  &  Q  term_types(ds;da;de;r.args[1]) Case R = >  ||de.rel(R)|| = ||r.args||    &  (  i:  . i < ||r.args||   (de.rel(R))[i]  term_types(ds;da;de;r.args[i])) Default = >  False | 
 | |  | Thm*  r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de)  Prop | 
|  | 
| term_types | Def term_types(ds;da;de;t)
== iterate(statevar x- > dec_lookup(ds;x)
 statevar x'- > dec_lookup(ds;x)
 funsymbol op- >  < de.fun(op) > 
 freevar x- > da
 trace(P)- >  < lbl_pr( < Trace, P > ) > 
 c1(c2)- > st_app(c1;c2)
 over t) | 
 | |  | Thm*  ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t)  Collection(SimpleType) | 
|  | 
| st_app | Def st_app(c1;c2) == (  s2  c2.(  s1  c1.st_app1(s1;s2))) | 
 | |  | Thm*  c1,c2:Collection(SimpleType). st_app(c1;c2)  Collection(SimpleType) | 
|  | 
| dec_lookup | Def dec_lookup(ds;x) ==  < d.typ | d  < d  ds |  d.lbl =  x >  > | 
 | |  | Thm*  ds:Collection(dec()), x:Label. dec_lookup(ds;x)  Collection(SimpleType) | 
|  | 
| st_app1 | Def st_app1(s1;s2) == Case(s1) Case a;b = >  if st_eq(a;s2)  < b >  else  <  >  fi Default = >   <  > | 
 | |  | Thm*  s1,s2:SimpleType. st_app1(s1;s2)  Collection(SimpleType) | 
|  | 
| dec | Def dec() == Label  SimpleType | 
 | |  | Thm* dec()  Type | 
|  | 
| st | Def SimpleType == Tree(Label+Unit) | 
 | |  | Thm* SimpleType  Type | 
|  | 
| term_iter | Def iterate(statevar x- > v(x)
 statevar x''- > v'(x')
 funsymbol op- > opr(op)
 freevar f- > fvar(f)
 trace(tr)- > trace(tr)
 a(b)- > comb(a;b)
 over t)
== term_iterate(  x.v(x);  x'.v'(x');  op.opr(op);  f.fvar(f);  tr.trace(tr);  a,b. comb(a;b);
 t) | 
 | |  | Thm*  A:Type, v,v',opr,fvar,trace:(Label   A), comb:(A   A   A), t:Term.
iterate(statevar x- > v(x)
 statevar x''- > v'(x')
 funsymbol op- > opr(op)
 freevar f- > fvar(f)
 trace(tr)- > trace(tr)
 a(b)- > comb(a,b)
 over t)  A | 
|  | 
| lbl | Def Label == {p:Pattern|  ground_ptn(p) } | 
 | |  | Thm* Label  Type | 
|  | 
| st_eq | Def st_eq(s1;s2) == Case(s1) Case a;b = >  Case(s2) Case a';b' = >  st_eq(a;a')   st_eq(b;b') Default = >  false  Case tree_leaf(x) = >  Case(s2) Case a';b' = >  false  Case tree_leaf(y) = >  InjCase(x; x'. InjCase(y; y'. x' =  y'; b. false  ); a. InjCase(y; y'. false  ; b. true  )) Default = >  false  Default = >  false  (recursive) | 
 | |  | Thm*  s1,s2:SimpleType. st_eq(s1;s2)    | 
|  | 
| eq_lbl | Def l1 =  l2 == Case(l1) Case ptn_atom(x) = >  Case(l2) Case ptn_atom(y) = >  x=  y  Atom Default = >  false  Case ptn_int(x) = >  Case(l2) Case ptn_int(y) = >  x=  y Default = >  false  Case ptn_var(x) = >  Case(l2) Case ptn_var(y) = >  x=  y  Atom Default = >  false  Case ptn_pr( < x, y > ) = >  Case(l2) Case ptn_pr( < u, v > ) = >  x =  u   y =  v Default = >  false  Default = >  false  (recursive) | 
 | |  | Thm*  l1,l2:Pattern. l1 =  l2    | 
|  | 
| term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(  x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) | 
 | |  | Thm*  A:Type, v,op,f,p,tr:(Label   A), a:(A   A   A), t:Term. term_iterate(v;p;op;f;tr;a;t)  A | 
|  | 
| ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = >  false  Case ptn_pr( < x, y > ) = >  ground_ptn(x)   ground_ptn(y) Default = >  true  (recursive) | 
 | |  | Thm*  p:Pattern. ground_ptn(p)    | 
|  | 
| ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case  == Case(x) Case ts_var(a) = >  v(a) Case ts_pvar(b) = >  p(b) Case ts_op(f) = >  op(f) Case ts_fvar(x) = >  f(x) Case ts_trace(P) = >  t(P) Default = >  | 
 | |  | Thm*  A:Type, v,op,f,p,t:(Label   A), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case  A | 
|  | 
| t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = >  n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = >  l(x) Default = >  True  (recursive) | 
 | |  | Thm*  E,A:Type, l:(E   A), n:(A   A   A), t:Tree(E). t_iterate(l;n;t)  A | 
|  | 
| case_default | Def Default = >  body(value,value) == body | 
|  | 
| rel_args | Def t.args == 2of(t) | 
 | |  | Thm*  t:rel(). t.args  Term List | 
|  | 
| select | Def l[i] == hd(nth_tl(i;l)) | 
 | |  | Thm*  A:Type, l:A List, n:  . 0  n   n < ||l||   l[n]  A | 
|  | 
| sig_rel | Def t.rel == 2of(t) | 
 | |  | Thm*  t:sig(). t.rel  Label   (SimpleType List) | 
|  | 
| col_accum | Def (  x  c.f(x))(y) ==  x:T. x  c  &  y  f(x) | 
 | |  | Thm*  T,T':Type, f:(T   Collection(T')), c:Collection(T). (  x  c.f(x))  Collection(T') | 
|  | 
| col_filter | Def  < x  c | P(x) > (x) == x  c  &  P(x) | 
 | |  | Thm*  T:Type, c:Collection(T), Q:(T   Prop).  < i  c | Q(i) >  Collection(T) | 
|  | 
| col_map | Def  < f(x) | x  c > (y) ==  x:T. x  c  &  y = f(x)  T' | 
 | |  | Thm*  T,T':Type, f:(T   T'), c:Collection(T).  < f(x) | x  c >  Collection(T') | 
|  | 
| col_member | Def x  c == c(x) | 
 | |  | Thm*  T:Type, x:T, c:Collection(T). x  c  Prop | 
|  | 
| length | Def ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive) | 
 | |  | Thm*  A:Type, l:A List. ||l||    | 
 | |  | Thm* ||nil||    | 
|  | 
| nat | Def  == {i:  | 0  i } | 
 | |  | Thm*    Type | 
|  | 
| case_relname_other | Def Case x = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) | 
|  | 
| case_relname_eq | Def Case eq(x) = >  body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| rel_name | Def t.name == 1of(t) | 
 | |  | Thm*  t:rel(). t.name  relname() | 
|  | 
| case | Def Case(value) body == body(value,value) | 
|  | 
| dec_typ | Def t.typ == 2of(t) | 
 | |  | Thm*  t:dec(). t.typ  SimpleType | 
|  | 
| pi2 | Def 2of(t) == t.2 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 2of(p)  B(1of(p)) | 
|  | 
| nth_tl | Def nth_tl(n;as) == if n   0  as else nth_tl(n-1;tl(as)) fi  (recursive) | 
 | |  | Thm*  A:Type, as:A List, i:  . nth_tl(i;as)  A List | 
|  | 
| case_ptn_var | Def Case ptn_var(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| case_ptn_int | Def Case ptn_int(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| case_ts_trace | Def Case ts_trace(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inr(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| case_ts_fvar | Def Case ts_fvar(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| case_ts_op | Def Case ts_op(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| case_ts_pvar | Def Case ts_pvar(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h | 
 | |  | Thm*  A:Type, l:A List. ||l||  1   hd(l)  A | 
 | |  | Thm*  A:Type, l:A List  . hd(l)  A | 
|  | 
| clbl | Def $x == ptn_atom("$x") | 
|  | 
| lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) | 
 | |  | Thm*  x,y:Pattern. lbl_pr( < x, y > )  Pattern | 
 | |  | Thm*  x,y:Label. lbl_pr( < x, y > )  Label | 
|  | 
| typ | Def t == tree_leaf(inl(t)) | 
 | |  | Thm*  t:Label. t  SimpleType | 
|  | 
| col_singleton | Def  < x > (y) == y = x  T | 
 | |  | Thm*  T:Type, x:T.  < x >  Collection(T) | 
|  | 
| sig_fun | Def t.fun == 1of(t) | 
 | |  | Thm*  t:sig(). t.fun  Label   SimpleType | 
|  | 
| le | Def A  B ==  B < A | 
 | |  | Thm*  i,j:  . (i  j)  Prop | 
|  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t | 
 | |  | Thm*  A:Type, l:A List. tl(l)  A List | 
|  | 
| case_inr | Def inr(x) = >  body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) | 
|  | 
| dec_lbl | Def t.lbl == 1of(t) | 
 | |  | Thm*  t:dec(). t.lbl  Label | 
|  | 
| pi1 | Def 1of(t) == t.1 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 1of(p)  A | 
|  | 
| le_int | Def i   j ==   j <  i | 
 | |  | Thm*  i,j:  . (i   j)    | 
|  | 
| ptn_atom | Def ptn_atom(x) == inl(x) | 
 | |  | Thm*  T:Type, x:Atom. ptn_atom(x)  ptn_con(T) | 
 | |  | Thm*  x:Atom. ptn_atom(x)  Pattern | 
 | |  | Thm*  x:Atom. ptn_atom(x)  Label | 
|  | 
| ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) | 
 | |  | Thm*  T:Type, x:(T  T). ptn_pr(x)  ptn_con(T) | 
 | |  | Thm*  x,y:Pattern. ptn_pr( < x,y > )  Pattern | 
|  | 
| tree_leaf | Def tree_leaf(x) == inl(x) | 
 | |  | Thm*  E,T:Type, x:E. tree_leaf(x)  tree_con(E;T) | 
 | |  | Thm*  E:Type, x:E. tree_leaf(x)  Tree(E) | 
|  | 
| tree | Def Tree(E) == rec(T.tree_con(E;T)) | 
 | |  | Thm*  E:Type. Tree(E)  Type | 
|  | 
| assert | Def  b == if b  True else False fi | 
 | |  | Thm*  b:  . b  Prop | 
|  | 
| not | Def  A == A   False | 
 | |  | Thm*  A:Prop. (  A)  Prop | 
|  | 
| lt_int | Def i <  j == if i < j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i <  j)    | 
|  | 
| bnot | Def   b == if b  false  else true  fi | 
 | |  | Thm*  b:  .   b    | 
|  | 
| col_none | Def  <  > (x) == False | 
 | |  | Thm*  T:Type.  <  >  Collection(T) | 
|  | 
| case_node | Def Case x;y = >  body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) | 
|  | 
| ptn | Def Pattern == rec(T.ptn_con(T)) | 
 | |  | Thm* Pattern  Type | 
|  | 
| tree_con | Def tree_con(E;T) == E+(T  T) | 
 | |  | Thm*  E,T:Type. tree_con(E;T)  Type | 
|  | 
| band | Def p   q == if p  q else false  fi | 
 | |  | Thm*  p,q:  . (p   q)    | 
|  | 
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = >  body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) | 
|  | 
| eq_atom | Def x=  y  Atom == if x=y  Atom  true  ; false  fi | 
 | |  | Thm*  x,y:Atom. x=  y  Atom    | 
|  | 
| eq_int | Def i=  j == if i=j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i=  j)    | 
|  | 
| case_ptn_atom | Def Case ptn_atom(x) = >  body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| case_tree_leaf | Def Case tree_leaf(x) = >  body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| ptn_con | Def ptn_con(T) == Atom+  +Atom+(T  T) | 
 | |  | Thm*  T:Type. ptn_con(T)  Type | 
|  | 
| case_inl | Def inl(x) = >  body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) | 
|  | 
| case_ts_var | Def Case ts_var(x) = >  body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |