| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| le | Def A B == B<A |
| | | Thm* i,j: . (i j) Prop |
|
| mu | Def mu(f) == if f(0) 0 else mu( x.f(x+1))+1 fi (recursive) |
| | | Thm* f:(   ). ( n: . f(n))  mu(f)  |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |