Definitions mb event system 1 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
firstnDef firstn(n;as)
Def == Case of as
Def == Canil  nil
Def == Caa.as'  if 0<n [a / firstn(n-1;as')] else nil fi
Def (recursive)
Thm* A:Type, as:A List, n:. firstn(n;as A List
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
le_intDef ij == j<i
Thm* i,j:. (ij 
uptoDef upto(n) == if n=0 nil else upto(n-1) @ [(n-1)] fi  (recursive)
Thm* n:. upto(n n List

About:
listconsconsnillist_ind
boolifthenelseintnatural_numbersubtractless_thanset
recursive_def_noticeuniversememberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 1 Sections EventSystems Doc